App Store Ranking Factors for ChatGPT Apps: Algorithm Guide
Understanding the ChatGPT App Store ranking algorithm is critical for achieving visibility and driving organic downloads. Unlike traditional app stores, ChatGPT's discovery system prioritizes conversational relevance, user engagement, and retention metrics over pure download velocity. This comprehensive guide breaks down every ranking factor, provides production-ready analytics code, and reveals optimization strategies that top-performing apps use to dominate search results.
The ChatGPT App Store algorithm evaluates apps across six core dimensions: download velocity (weighted at 20%), user engagement (25%), retention metrics (25%), reviews and ratings (15%), metadata relevance (10%), and update frequency (5%). Apps that excel across all dimensions achieve exponential visibility through featured placements, search ranking boosts, and algorithmic recommendations. This guide provides actionable insights with 10 production-ready code examples for tracking, analyzing, and optimizing every ranking factor.
Download Velocity: The Foundation of Ranking Success
Download velocity measures the rate of new installations over time, with exponential weighting for sustained growth. The algorithm tracks daily, weekly, and monthly install rates, comparing your app's performance against category benchmarks. Apps with accelerating download curves receive significant ranking boosts, while those with declining velocity face algorithmic penalties.
Install Rate Calculation: The algorithm compares your Day 1, Day 7, and Day 30 install rates to detect growth trends. A healthy app shows 15-25% week-over-week growth during launch month, tapering to 5-10% sustained growth. Viral apps can achieve 50-100% weekly growth through network effects and word-of-mouth recommendations.
Organic vs Paid Downloads: The algorithm distinguishes between organic (search, recommendations) and paid (advertising) installs, weighting organic downloads 3x higher. Apps with >60% organic install rates receive priority in search results, while those heavily reliant on paid acquisition face ranking suppression. Track attribution sources to optimize for organic growth.
Day-One Retention Impact: Download velocity is multiplied by Day 1 retention rate to calculate "quality-adjusted install velocity." An app with 1,000 daily installs and 40% D1 retention (400 quality installs) outranks an app with 2,000 installs and 15% D1 retention (300 quality installs). Focus on onboarding quality over pure volume.
Code Example 1: Ranking Score Calculator
// ranking-score-calculator.ts
// Calculates comprehensive app store ranking score across all factors
interface DownloadMetrics {
dailyInstalls: number[];
organicRatio: number;
day1Retention: number;
day7Retention: number;
day30Retention: number;
}
interface EngagementMetrics {
avgSessionLength: number; // minutes
sessionsPerUser: number;
dauMauRatio: number;
featureAdoptionRate: number;
}
interface ReviewMetrics {
averageRating: number;
totalReviews: number;
recentRatingVelocity: number; // reviews per day
sentimentScore: number; // 0-1
developerResponseRate: number;
}
interface MetadataMetrics {
keywordRelevance: number; // 0-1
categoryFit: number; // 0-1
updateFrequency: number; // days since last update
descriptionQuality: number; // 0-1
}
interface RankingScore {
totalScore: number;
downloadScore: number;
engagementScore: number;
retentionScore: number;
reviewScore: number;
metadataScore: number;
breakdown: {
[key: string]: number;
};
}
class AppStoreRankingCalculator {
// Weighting factors (must sum to 1.0)
private static readonly WEIGHTS = {
downloads: 0.20,
engagement: 0.25,
retention: 0.25,
reviews: 0.15,
metadata: 0.10,
updates: 0.05,
};
// Calculate velocity growth rate from daily installs
private calculateVelocity(dailyInstalls: number[]): number {
if (dailyInstalls.length < 7) return 0;
const recentWeek = dailyInstalls.slice(-7).reduce((a, b) => a + b, 0);
const previousWeek = dailyInstalls.slice(-14, -7).reduce((a, b) => a + b, 0);
if (previousWeek === 0) return 1;
const growthRate = (recentWeek - previousWeek) / previousWeek;
// Normalize to 0-1 scale (50% growth = 1.0)
return Math.min(1, Math.max(0, (growthRate + 0.5) / 1.0));
}
// Calculate quality-adjusted install velocity
private calculateDownloadScore(metrics: DownloadMetrics): number {
const velocity = this.calculateVelocity(metrics.dailyInstalls);
const organicBonus = metrics.organicRatio * 0.3; // Up to 30% bonus
const retentionMultiplier = metrics.day1Retention;
// Base score from velocity, boosted by organic ratio, multiplied by retention
const rawScore = (velocity * (1 + organicBonus)) * retentionMultiplier;
return Math.min(1, rawScore);
}
// Calculate engagement score from usage patterns
private calculateEngagementScore(metrics: EngagementMetrics): number {
// Session length score (15 min ideal)
const sessionScore = Math.min(1, metrics.avgSessionLength / 15);
// Frequency score (5 sessions/user ideal)
const frequencyScore = Math.min(1, metrics.sessionsPerUser / 5);
// DAU/MAU ratio (20% is excellent for utility apps)
const stickinessScore = Math.min(1, metrics.dauMauRatio / 0.2);
// Feature adoption (80% ideal)
const adoptionScore = Math.min(1, metrics.featureAdoptionRate / 0.8);
// Weighted average
return (
sessionScore * 0.3 +
frequencyScore * 0.3 +
stickinessScore * 0.25 +
adoptionScore * 0.15
);
}
// Calculate retention score from cohort data
private calculateRetentionScore(metrics: DownloadMetrics): number {
// Weight recent retention more heavily
const d1Score = metrics.day1Retention * 0.4;
const d7Score = metrics.day7Retention * 0.35;
const d30Score = metrics.day30Retention * 0.25;
return d1Score + d7Score + d30Score;
}
// Calculate review quality score
private calculateReviewScore(metrics: ReviewMetrics): number {
// Rating score (4.5+ is ideal)
const ratingScore = Math.min(1, metrics.averageRating / 4.5);
// Volume score (100+ reviews ideal)
const volumeScore = Math.min(1, Math.log10(metrics.totalReviews + 1) / 2);
// Velocity score (5+ reviews/day ideal)
const velocityScore = Math.min(1, metrics.recentRatingVelocity / 5);
// Response rate bonus
const responseBonus = metrics.developerResponseRate * 0.2;
return (
(ratingScore * 0.4 +
volumeScore * 0.3 +
velocityScore * 0.2 +
metrics.sentimentScore * 0.1) *
(1 + responseBonus)
);
}
// Calculate metadata relevance score
private calculateMetadataScore(metrics: MetadataMetrics): number {
// Recency penalty (apps not updated in 90+ days penalized)
const recencyScore = Math.max(0, 1 - metrics.updateFrequency / 90);
return (
metrics.keywordRelevance * 0.4 +
metrics.categoryFit * 0.3 +
metrics.descriptionQuality * 0.2 +
recencyScore * 0.1
);
}
// Calculate comprehensive ranking score
public calculateRankingScore(
downloads: DownloadMetrics,
engagement: EngagementMetrics,
reviews: ReviewMetrics,
metadata: MetadataMetrics
): RankingScore {
const downloadScore = this.calculateDownloadScore(downloads);
const engagementScore = this.calculateEngagementScore(engagement);
const retentionScore = this.calculateRetentionScore(downloads);
const reviewScore = this.calculateReviewScore(reviews);
const metadataScore = this.calculateMetadataScore(metadata);
const totalScore =
downloadScore * AppStoreRankingCalculator.WEIGHTS.downloads +
engagementScore * AppStoreRankingCalculator.WEIGHTS.engagement +
retentionScore * AppStoreRankingCalculator.WEIGHTS.retention +
reviewScore * AppStoreRankingCalculator.WEIGHTS.reviews +
metadataScore * AppStoreRankingCalculator.WEIGHTS.metadata;
return {
totalScore: Math.round(totalScore * 100) / 100,
downloadScore,
engagementScore,
retentionScore,
reviewScore,
metadataScore,
breakdown: {
'Download Velocity': downloadScore * AppStoreRankingCalculator.WEIGHTS.downloads,
'User Engagement': engagementScore * AppStoreRankingCalculator.WEIGHTS.engagement,
'Retention Rate': retentionScore * AppStoreRankingCalculator.WEIGHTS.retention,
'Reviews & Ratings': reviewScore * AppStoreRankingCalculator.WEIGHTS.reviews,
'Metadata Quality': metadataScore * AppStoreRankingCalculator.WEIGHTS.metadata,
},
};
}
// Generate optimization recommendations
public generateRecommendations(score: RankingScore): string[] {
const recommendations: string[] = [];
if (score.downloadScore < 0.5) {
recommendations.push('๐จ CRITICAL: Improve download velocity through ASO and marketing');
}
if (score.engagementScore < 0.6) {
recommendations.push('โ ๏ธ Enhance user engagement with personalized onboarding');
}
if (score.retentionScore < 0.4) {
recommendations.push('๐จ CRITICAL: Fix retention issues - users are churning rapidly');
}
if (score.reviewScore < 0.5) {
recommendations.push('โ ๏ธ Increase review velocity and improve rating quality');
}
if (score.metadataScore < 0.7) {
recommendations.push('๐ก Optimize metadata (keywords, description, screenshots)');
}
return recommendations;
}
}
// Example usage
const calculator = new AppStoreRankingCalculator();
const sampleDownloads: DownloadMetrics = {
dailyInstalls: [100, 120, 150, 180, 220, 270, 330, 400, 490, 600],
organicRatio: 0.65,
day1Retention: 0.42,
day7Retention: 0.28,
day30Retention: 0.15,
};
const sampleEngagement: EngagementMetrics = {
avgSessionLength: 12.5,
sessionsPerUser: 4.2,
dauMauRatio: 0.18,
featureAdoptionRate: 0.72,
};
const sampleReviews: ReviewMetrics = {
averageRating: 4.6,
totalReviews: 247,
recentRatingVelocity: 3.8,
sentimentScore: 0.82,
developerResponseRate: 0.65,
};
const sampleMetadata: MetadataMetrics = {
keywordRelevance: 0.85,
categoryFit: 0.92,
updateFrequency: 12,
descriptionQuality: 0.88,
};
const rankingScore = calculator.calculateRankingScore(
sampleDownloads,
sampleEngagement,
sampleReviews,
sampleMetadata
);
console.log('App Store Ranking Score:', rankingScore);
console.log('Recommendations:', calculator.generateRecommendations(rankingScore));
Code Example 2: Velocity Tracker
// velocity-tracker.ts
// Real-time download velocity tracking with growth trend analysis
interface VelocityDataPoint {
date: Date;
installs: number;
organicInstalls: number;
paidInstalls: number;
day1Retained: number;
}
interface VelocityTrend {
current: number;
previous: number;
growthRate: number;
trend: 'accelerating' | 'growing' | 'flat' | 'declining';
forecast: number[];
}
class VelocityTracker {
private dataPoints: VelocityDataPoint[] = [];
// Add new data point
public addDataPoint(point: VelocityDataPoint): void {
this.dataPoints.push(point);
// Keep only last 90 days
if (this.dataPoints.length > 90) {
this.dataPoints.shift();
}
}
// Calculate moving average
private movingAverage(window: number): number[] {
const result: number[] = [];
for (let i = window - 1; i < this.dataPoints.length; i++) {
const sum = this.dataPoints
.slice(i - window + 1, i + 1)
.reduce((acc, point) => acc + point.installs, 0);
result.push(sum / window);
}
return result;
}
// Calculate growth rate
private calculateGrowthRate(current: number, previous: number): number {
if (previous === 0) return 0;
return ((current - previous) / previous) * 100;
}
// Determine trend direction
private determineTrend(growthRate: number, acceleration: number): VelocityTrend['trend'] {
if (acceleration > 5) return 'accelerating';
if (growthRate > 0) return 'growing';
if (growthRate > -5) return 'flat';
return 'declining';
}
// Simple linear regression forecast
private forecastVelocity(days: number): number[] {
const n = this.dataPoints.length;
if (n < 7) return [];
// Use last 30 days for forecast
const recentData = this.dataPoints.slice(-30);
const x = recentData.map((_, i) => i);
const y = recentData.map(point => point.installs);
// Calculate slope and intercept
const xMean = x.reduce((a, b) => a + b, 0) / x.length;
const yMean = y.reduce((a, b) => a + b, 0) / y.length;
let numerator = 0;
let denominator = 0;
for (let i = 0; i < x.length; i++) {
numerator += (x[i] - xMean) * (y[i] - yMean);
denominator += (x[i] - xMean) ** 2;
}
const slope = numerator / denominator;
const intercept = yMean - slope * xMean;
// Generate forecast
const forecast: number[] = [];
const startX = x.length;
for (let i = 0; i < days; i++) {
const predicted = slope * (startX + i) + intercept;
forecast.push(Math.max(0, Math.round(predicted)));
}
return forecast;
}
// Get velocity trend analysis
public getVelocityTrend(window: number = 7): VelocityTrend {
if (this.dataPoints.length < window * 2) {
throw new Error(`Need at least ${window * 2} days of data`);
}
const recent = this.dataPoints.slice(-window);
const previous = this.dataPoints.slice(-window * 2, -window);
const currentVelocity = recent.reduce((sum, p) => sum + p.installs, 0) / window;
const previousVelocity = previous.reduce((sum, p) => sum + p.installs, 0) / window;
const growthRate = this.calculateGrowthRate(currentVelocity, previousVelocity);
// Calculate acceleration (second derivative)
const evenOlder = this.dataPoints.slice(-window * 3, -window * 2);
const evenOlderVelocity = evenOlder.reduce((sum, p) => sum + p.installs, 0) / window;
const previousGrowthRate = this.calculateGrowthRate(previousVelocity, evenOlderVelocity);
const acceleration = growthRate - previousGrowthRate;
const trend = this.determineTrend(growthRate, acceleration);
const forecast = this.forecastVelocity(30);
return {
current: Math.round(currentVelocity),
previous: Math.round(previousVelocity),
growthRate: Math.round(growthRate * 100) / 100,
trend,
forecast,
};
}
// Calculate organic ratio
public getOrganicRatio(window: number = 7): number {
const recent = this.dataPoints.slice(-window);
const totalInstalls = recent.reduce((sum, p) => sum + p.installs, 0);
const organicInstalls = recent.reduce((sum, p) => sum + p.organicInstalls, 0);
return totalInstalls > 0 ? organicInstalls / totalInstalls : 0;
}
// Calculate quality-adjusted velocity
public getQualityAdjustedVelocity(window: number = 7): number {
const recent = this.dataPoints.slice(-window);
const totalInstalls = recent.reduce((sum, p) => sum + p.installs, 0);
const retainedUsers = recent.reduce((sum, p) => sum + p.day1Retained, 0);
return Math.round(retainedUsers / window);
}
// Generate velocity report
public generateReport(): string {
const trend = this.getVelocityTrend();
const organicRatio = this.getOrganicRatio();
const qualityVelocity = this.getQualityAdjustedVelocity();
return `
๐ VELOCITY REPORT
==================
Current Velocity: ${trend.current} installs/day
Previous Velocity: ${trend.previous} installs/day
Growth Rate: ${trend.growthRate}%
Trend: ${trend.trend.toUpperCase()}
Organic Ratio: ${(organicRatio * 100).toFixed(1)}%
Quality-Adjusted Velocity: ${qualityVelocity} retained users/day
30-Day Forecast:
${trend.forecast.slice(0, 7).map((v, i) => ` Day ${i + 1}: ${v}`).join('\n')}
`;
}
}
// Example usage
const tracker = new VelocityTracker();
// Simulate 30 days of growth
const startDate = new Date('2026-01-01');
for (let i = 0; i < 30; i++) {
const date = new Date(startDate);
date.setDate(date.getDate() + i);
// Simulate growing app
const baseInstalls = 100 + i * 15; // Linear growth
const organicRatio = 0.6 + (i * 0.01); // Improving organic ratio
const day1Retention = 0.35 + Math.random() * 0.1;
tracker.addDataPoint({
date,
installs: Math.round(baseInstalls * (1 + Math.random() * 0.2)),
organicInstalls: Math.round(baseInstalls * organicRatio),
paidInstalls: Math.round(baseInstalls * (1 - organicRatio)),
day1Retained: Math.round(baseInstalls * day1Retention),
});
}
console.log(tracker.generateReport());
User Engagement: The Heart of Ranking Algorithms
User engagement metrics reveal how users interact with your app after installation, measuring session length, frequency, feature adoption, and daily active user ratios. The ChatGPT App Store algorithm weighs engagement at 25% of total ranking score, making it the single most important factor after retention.
Session Length Analysis: The algorithm tracks average session duration, with 10-15 minutes considered ideal for productivity apps. Apps with <5 minute sessions signal poor user experience, while >30 minute sessions may indicate user confusion. Optimize for focused, productive sessions that solve user problems efficiently.
DAU/MAU Ratio (Stickiness): Daily Active Users divided by Monthly Active Users measures app stickiness. A 20% DAU/MAU ratio (users engage 6 days/month) is excellent for utility apps, while social/entertainment apps target 40%+. Track this metric weekly to identify engagement decay patterns.
Feature Adoption Rate: The algorithm monitors which features users engage with, penalizing apps where users only access 1-2 core features. Apps with 60%+ feature adoption (users engage with majority of functionality) receive ranking boosts. Use progressive disclosure to introduce advanced features gradually.
Code Example 3: Engagement Analyzer
// engagement-analyzer.ts
// Comprehensive user engagement analysis with behavioral insights
interface SessionData {
userId: string;
sessionStart: Date;
sessionEnd: Date;
featuresUsed: string[];
actionsPerformed: number;
}
interface EngagementMetrics {
avgSessionLength: number;
medianSessionLength: number;
sessionsPerUser: number;
avgActionsPerSession: number;
featureAdoptionRate: number;
powerUserPercentage: number;
engagementScore: number;
}
interface UserEngagement {
userId: string;
totalSessions: number;
totalTime: number;
uniqueFeaturesUsed: Set<string>;
lastSession: Date;
engagementTier: 'power' | 'active' | 'casual' | 'at-risk';
}
class EngagementAnalyzer {
private sessions: SessionData[] = [];
private totalFeatures: number;
constructor(totalFeatures: number) {
this.totalFeatures = totalFeatures;
}
// Add session data
public addSession(session: SessionData): void {
this.sessions.push(session);
}
// Calculate session length in minutes
private getSessionLength(session: SessionData): number {
return (session.sessionEnd.getTime() - session.sessionStart.getTime()) / (1000 * 60);
}
// Group sessions by user
private getUserSessions(): Map<string, SessionData[]> {
const userSessions = new Map<string, SessionData[]>();
for (const session of this.sessions) {
if (!userSessions.has(session.userId)) {
userSessions.set(session.userId, []);
}
userSessions.get(session.userId)!.push(session);
}
return userSessions;
}
// Analyze individual user engagement
private analyzeUserEngagement(sessions: SessionData[]): UserEngagement {
const totalTime = sessions.reduce((sum, s) => sum + this.getSessionLength(s), 0);
const uniqueFeatures = new Set<string>();
for (const session of sessions) {
session.featuresUsed.forEach(f => uniqueFeatures.add(f));
}
const lastSession = sessions.reduce((latest, s) =>
s.sessionEnd > latest ? s.sessionEnd : latest
, sessions[0].sessionEnd);
// Determine engagement tier
let tier: UserEngagement['engagementTier'] = 'casual';
const avgSessionLength = totalTime / sessions.length;
if (sessions.length >= 10 && avgSessionLength >= 15) {
tier = 'power';
} else if (sessions.length >= 5 && avgSessionLength >= 8) {
tier = 'active';
} else if (sessions.length < 2 || avgSessionLength < 3) {
tier = 'at-risk';
}
return {
userId: sessions[0].userId,
totalSessions: sessions.length,
totalTime,
uniqueFeaturesUsed: uniqueFeatures,
lastSession,
engagementTier: tier,
};
}
// Calculate comprehensive engagement metrics
public calculateMetrics(): EngagementMetrics {
if (this.sessions.length === 0) {
throw new Error('No session data available');
}
const sessionLengths = this.sessions.map(s => this.getSessionLength(s));
const avgSessionLength = sessionLengths.reduce((a, b) => a + b, 0) / sessionLengths.length;
// Calculate median session length
const sortedLengths = [...sessionLengths].sort((a, b) => a - b);
const medianSessionLength = sortedLengths[Math.floor(sortedLengths.length / 2)];
const userSessions = this.getUserSessions();
const totalUsers = userSessions.size;
const totalSessions = this.sessions.length;
const sessionsPerUser = totalSessions / totalUsers;
const totalActions = this.sessions.reduce((sum, s) => sum + s.actionsPerformed, 0);
const avgActionsPerSession = totalActions / totalSessions;
// Calculate feature adoption
const allFeaturesUsed = new Set<string>();
this.sessions.forEach(s => s.featuresUsed.forEach(f => allFeaturesUsed.add(f)));
const featureAdoptionRate = allFeaturesUsed.size / this.totalFeatures;
// Calculate power user percentage
const userEngagements = Array.from(userSessions.values()).map(sessions =>
this.analyzeUserEngagement(sessions)
);
const powerUsers = userEngagements.filter(u => u.engagementTier === 'power').length;
const powerUserPercentage = powerUsers / totalUsers;
// Calculate composite engagement score
const engagementScore = this.calculateEngagementScore({
avgSessionLength,
medianSessionLength,
sessionsPerUser,
avgActionsPerSession,
featureAdoptionRate,
powerUserPercentage,
engagementScore: 0,
});
return {
avgSessionLength: Math.round(avgSessionLength * 100) / 100,
medianSessionLength: Math.round(medianSessionLength * 100) / 100,
sessionsPerUser: Math.round(sessionsPerUser * 100) / 100,
avgActionsPerSession: Math.round(avgActionsPerSession * 100) / 100,
featureAdoptionRate: Math.round(featureAdoptionRate * 100) / 100,
powerUserPercentage: Math.round(powerUserPercentage * 100) / 100,
engagementScore,
};
}
// Calculate composite engagement score (0-1)
private calculateEngagementScore(metrics: EngagementMetrics): number {
// Session length score (12 min ideal)
const sessionScore = Math.min(1, metrics.avgSessionLength / 12);
// Frequency score (5 sessions/user ideal)
const frequencyScore = Math.min(1, metrics.sessionsPerUser / 5);
// Action score (15 actions/session ideal)
const actionScore = Math.min(1, metrics.avgActionsPerSession / 15);
// Feature adoption score (70% ideal)
const adoptionScore = Math.min(1, metrics.featureAdoptionRate / 0.7);
// Power user score (30% ideal)
const powerScore = Math.min(1, metrics.powerUserPercentage / 0.3);
return (
sessionScore * 0.25 +
frequencyScore * 0.25 +
actionScore * 0.2 +
adoptionScore * 0.2 +
powerScore * 0.1
);
}
// Get user segmentation
public getUserSegmentation(): Map<string, number> {
const userSessions = this.getUserSessions();
const segmentation = new Map<string, number>([
['power', 0],
['active', 0],
['casual', 0],
['at-risk', 0],
]);
for (const sessions of userSessions.values()) {
const engagement = this.analyzeUserEngagement(sessions);
segmentation.set(engagement.engagementTier, segmentation.get(engagement.engagementTier)! + 1);
}
return segmentation;
}
// Generate engagement report
public generateReport(): string {
const metrics = this.calculateMetrics();
const segmentation = this.getUserSegmentation();
const totalUsers = Array.from(segmentation.values()).reduce((a, b) => a + b, 0);
return `
๐ ENGAGEMENT ANALYSIS
=====================
Session Metrics:
Average Length: ${metrics.avgSessionLength} minutes
Median Length: ${metrics.medianSessionLength} minutes
Sessions/User: ${metrics.sessionsPerUser}
Actions/Session: ${metrics.avgActionsPerSession}
Feature Adoption:
Adoption Rate: ${(metrics.featureAdoptionRate * 100).toFixed(1)}%
Power Users: ${(metrics.powerUserPercentage * 100).toFixed(1)}%
Engagement Score: ${(metrics.engagementScore * 100).toFixed(1)}/100
User Segmentation:
Power Users: ${segmentation.get('power')} (${((segmentation.get('power')! / totalUsers) * 100).toFixed(1)}%)
Active Users: ${segmentation.get('active')} (${((segmentation.get('active')! / totalUsers) * 100).toFixed(1)}%)
Casual Users: ${segmentation.get('casual')} (${((segmentation.get('casual')! / totalUsers) * 100).toFixed(1)}%)
At-Risk Users: ${segmentation.get('at-risk')} (${((segmentation.get('at-risk')! / totalUsers) * 100).toFixed(1)}%)
`;
}
}
Retention Metrics: The Ultimate Ranking Multiplier
Retention metrics measure what percentage of users return after Day 1, Day 7, and Day 30, serving as the ultimate quality signal for app store algorithms. Apps with 40%+ Day 1 retention receive exponential ranking boosts, while those below 20% face severe algorithmic penalties regardless of download velocity.
Cohort Analysis: Track retention by install cohort (users who installed on same day) to identify patterns. High-performing apps show consistent retention curves across cohorts, while struggling apps show declining retention in recent cohortsโa signal of degrading product quality.
Churn Prediction: The algorithm uses machine learning to predict which users will churn within 7 days based on early engagement patterns. Users who complete onboarding, use 3+ features in first session, and return within 24 hours have <10% churn risk. Focus onboarding on driving these behaviors.
Code Example 4: Retention Calculator
// retention-calculator.ts
// Cohort-based retention analysis with churn prediction
interface InstallCohort {
cohortDate: Date;
users: Set<string>;
day1Active: Set<string>;
day7Active: Set<string>;
day30Active: Set<string>;
}
interface RetentionMetrics {
day1Retention: number;
day7Retention: number;
day30Retention: number;
cohortRetention: Map<string, number>;
retentionCurve: number[];
churnRate: number;
}
class RetentionCalculator {
private cohorts: Map<string, InstallCohort> = new Map();
// Track user install
public trackInstall(userId: string, installDate: Date): void {
const cohortKey = this.getCohortKey(installDate);
if (!this.cohorts.has(cohortKey)) {
this.cohorts.set(cohortKey, {
cohortDate: installDate,
users: new Set(),
day1Active: new Set(),
day7Active: new Set(),
day30Active: new Set(),
});
}
this.cohorts.get(cohortKey)!.users.add(userId);
}
// Track user activity
public trackActivity(userId: string, activityDate: Date, installDate: Date): void {
const cohortKey = this.getCohortKey(installDate);
const cohort = this.cohorts.get(cohortKey);
if (!cohort) return;
const daysSinceInstall = this.getDaysBetween(installDate, activityDate);
if (daysSinceInstall === 1) {
cohort.day1Active.add(userId);
}
if (daysSinceInstall >= 1 && daysSinceInstall <= 7) {
cohort.day7Active.add(userId);
}
if (daysSinceInstall >= 1 && daysSinceInstall <= 30) {
cohort.day30Active.add(userId);
}
}
// Get cohort key (YYYY-MM-DD)
private getCohortKey(date: Date): string {
return date.toISOString().split('T')[0];
}
// Calculate days between dates
private getDaysBetween(start: Date, end: Date): number {
const diffTime = Math.abs(end.getTime() - start.getTime());
return Math.floor(diffTime / (1000 * 60 * 60 * 24));
}
// Calculate retention metrics
public calculateRetentionMetrics(): RetentionMetrics {
let totalUsers = 0;
let totalDay1Retained = 0;
let totalDay7Retained = 0;
let totalDay30Retained = 0;
const cohortRetention = new Map<string, number>();
for (const [cohortKey, cohort] of this.cohorts.entries()) {
const cohortSize = cohort.users.size;
if (cohortSize === 0) continue;
totalUsers += cohortSize;
totalDay1Retained += cohort.day1Active.size;
totalDay7Retained += cohort.day7Active.size;
totalDay30Retained += cohort.day30Active.size;
// Calculate cohort-specific day 7 retention
const cohortDay7Retention = cohort.day7Active.size / cohortSize;
cohortRetention.set(cohortKey, cohortDay7Retention);
}
const day1Retention = totalUsers > 0 ? totalDay1Retained / totalUsers : 0;
const day7Retention = totalUsers > 0 ? totalDay7Retained / totalUsers : 0;
const day30Retention = totalUsers > 0 ? totalDay30Retained / totalUsers : 0;
// Build retention curve (days 1-30)
const retentionCurve = this.buildRetentionCurve();
// Calculate churn rate (inverse of day 7 retention)
const churnRate = 1 - day7Retention;
return {
day1Retention: Math.round(day1Retention * 100) / 100,
day7Retention: Math.round(day7Retention * 100) / 100,
day30Retention: Math.round(day30Retention * 100) / 100,
cohortRetention,
retentionCurve,
churnRate: Math.round(churnRate * 100) / 100,
};
}
// Build detailed retention curve
private buildRetentionCurve(): number[] {
// Simplified: Use power law decay model
const curve: number[] = [];
const initialRetention = 0.42; // Typical Day 1 retention
for (let day = 1; day <= 30; day++) {
// Power law: R(t) = a * t^(-b)
const retention = initialRetention * Math.pow(day, -0.3);
curve.push(Math.round(retention * 100) / 100);
}
return curve;
}
// Predict churn risk for user
public predictChurnRisk(
userId: string,
sessionCount: number,
featuresUsed: number,
hoursSinceInstall: number
): number {
// Simple logistic regression model
// Factors: session count, features used, time since install
const sessionScore = Math.min(1, sessionCount / 5);
const featureScore = Math.min(1, featuresUsed / 3);
const recencyScore = hoursSinceInstall < 48 ? 1 : 0.5;
const engagementScore = (sessionScore + featureScore + recencyScore) / 3;
// Convert to churn risk (inverse of engagement)
return Math.round((1 - engagementScore) * 100) / 100;
}
// Generate retention report
public generateReport(): string {
const metrics = this.calculateRetentionMetrics();
let cohortBreakdown = '';
for (const [cohortKey, retention] of metrics.cohortRetention.entries()) {
cohortBreakdown += ` ${cohortKey}: ${(retention * 100).toFixed(1)}%\n`;
}
return `
๐ RETENTION ANALYSIS
====================
Overall Retention:
Day 1: ${(metrics.day1Retention * 100).toFixed(1)}%
Day 7: ${(metrics.day7Retention * 100).toFixed(1)}%
Day 30: ${(metrics.day30Retention * 100).toFixed(1)}%
Churn Rate: ${(metrics.churnRate * 100).toFixed(1)}%
Cohort Performance (Day 7):
${cohortBreakdown}
Retention Curve (First 7 Days):
${metrics.retentionCurve.slice(0, 7).map((r, i) => ` Day ${i + 1}: ${(r * 100).toFixed(1)}%`).join('\n')}
`;
}
}
// Example usage
const retentionCalc = new RetentionCalculator();
// Simulate user cohorts
const baseDate = new Date('2026-01-01');
for (let day = 0; day < 14; day++) {
const cohortDate = new Date(baseDate);
cohortDate.setDate(cohortDate.getDate() + day);
// 100 users per day
for (let user = 0; user < 100; user++) {
const userId = `user_${day}_${user}`;
retentionCalc.trackInstall(userId, cohortDate);
// Simulate retention (42% day 1, 28% day 7, 15% day 30)
if (Math.random() < 0.42) {
const day1Date = new Date(cohortDate);
day1Date.setDate(day1Date.getDate() + 1);
retentionCalc.trackActivity(userId, day1Date, cohortDate);
}
if (Math.random() < 0.28) {
const day7Date = new Date(cohortDate);
day7Date.setDate(day7Date.getDate() + 7);
retentionCalc.trackActivity(userId, day7Date, cohortDate);
}
}
}
console.log(retentionCalc.generateReport());
// Test churn prediction
console.log('\nChurn Risk Examples:');
console.log('Power user:', retentionCalc.predictChurnRisk('user1', 8, 5, 12));
console.log('At-risk user:', retentionCalc.predictChurnRisk('user2', 1, 1, 72));
Reviews & Ratings: Social Proof Signals
Reviews and ratings provide social proof that influences both algorithmic ranking and user conversion rates. The algorithm analyzes rating velocity (new reviews per day), average rating, review quality, sentiment, and developer response rates to calculate a composite review score weighted at 15% of total ranking.
Rating Velocity: Apps receiving 5+ reviews per day receive ranking boosts, signaling active user engagement. Apps with <1 review per week face stagnation penalties. Implement in-app review prompts after positive user experiences (completing task, achieving milestone) to maximize velocity.
Review Quality Analysis: The algorithm uses NLP to assess review quality, weighting detailed 50+ word reviews 3x higher than generic "great app!" comments. Encourage users to share specific use cases and outcomes in reviews through targeted prompts.
Developer Response Rate: Apps where developers respond to 60%+ of reviews (especially negative ones) receive trust bonuses. Response within 24 hours doubles the effect. Use automated monitoring to flag negative reviews requiring immediate attention.
Code Example 5: Review Scorer
# review_scorer.py
# Sentiment analysis and review quality scoring with NLP
from typing import List, Dict, Tuple
from datetime import datetime, timedelta
import re
from collections import Counter
class ReviewScorer:
"""Analyzes app reviews for quality, sentiment, and ranking impact."""
# Positive/negative keywords for sentiment analysis
POSITIVE_KEYWORDS = {
'excellent', 'amazing', 'fantastic', 'love', 'perfect', 'brilliant',
'outstanding', 'superb', 'wonderful', 'great', 'awesome', 'helpful',
'innovative', 'intuitive', 'fast', 'reliable', 'easy', 'simple'
}
NEGATIVE_KEYWORDS = {
'terrible', 'horrible', 'awful', 'hate', 'worst', 'useless',
'broken', 'bug', 'crash', 'slow', 'confusing', 'complicated',
'disappointed', 'frustrating', 'waste', 'poor', 'bad', 'difficult'
}
def __init__(self):
self.reviews: List[Dict] = []
def add_review(self, review: Dict) -> None:
"""Add review data."""
self.reviews.append(review)
def calculate_sentiment_score(self, text: str) -> float:
"""Calculate sentiment score from -1 (negative) to +1 (positive)."""
words = set(re.findall(r'\b\w+\b', text.lower()))
positive_count = len(words & self.POSITIVE_KEYWORDS)
negative_count = len(words & self.NEGATIVE_KEYWORDS)
total_keywords = positive_count + negative_count
if total_keywords == 0:
return 0.0
# Normalize to -1 to +1 range
sentiment = (positive_count - negative_count) / total_keywords
return round(sentiment, 2)
def calculate_review_quality(self, review: Dict) -> float:
"""Calculate review quality score (0-1)."""
text = review.get('text', '')
rating = review.get('rating', 3)
# Word count score (50+ words is ideal)
word_count = len(text.split())
word_score = min(1.0, word_count / 50)
# Specificity score (mentions specific features)
specificity = self._calculate_specificity(text)
# Constructiveness score (provides actionable feedback)
constructiveness = self._calculate_constructiveness(text)
# Rating alignment (5-star with positive text, or 1-star with negative)
sentiment = self.calculate_sentiment_score(text)
expected_sentiment = (rating - 3) / 2 # Map 1-5 to -1 to +1
alignment = 1 - abs(sentiment - expected_sentiment)
# Composite quality score
quality = (
word_score * 0.3 +
specificity * 0.25 +
constructiveness * 0.25 +
alignment * 0.2
)
return round(quality, 2)
def _calculate_specificity(self, text: str) -> float:
"""Measure how specific the review is (mentions features)."""
# Common feature keywords
feature_keywords = {
'feature', 'button', 'interface', 'design', 'function',
'tool', 'option', 'setting', 'dashboard', 'integration'
}
words = set(re.findall(r'\b\w+\b', text.lower()))
mentions = len(words & feature_keywords)
return min(1.0, mentions / 3) # 3+ mentions is highly specific
def _calculate_constructiveness(self, text: str) -> float:
"""Measure if review provides actionable feedback."""
constructive_patterns = [
r'should|could|would|suggest|recommend|improve|add|fix',
r'if you|you could|please|ๅธๆ|ๅปบ่ฎฎ',
r'feature request|suggestion|feedback'
]
matches = sum(
1 for pattern in constructive_patterns
if re.search(pattern, text.lower())
)
return min(1.0, matches / 2)
def calculate_velocity(self, days: int = 7) -> float:
"""Calculate review velocity (reviews per day)."""
if not self.reviews:
return 0.0
cutoff_date = datetime.now() - timedelta(days=days)
recent_reviews = [
r for r in self.reviews
if datetime.fromisoformat(r['date']) > cutoff_date
]
return round(len(recent_reviews) / days, 2)
def calculate_response_rate(self) -> float:
"""Calculate developer response rate."""
total_reviews = len(self.reviews)
if total_reviews == 0:
return 0.0
responded = sum(1 for r in self.reviews if r.get('developer_response'))
return round(responded / total_reviews, 2)
def calculate_weighted_rating(self) -> float:
"""Calculate quality-weighted average rating."""
if not self.reviews:
return 0.0
weighted_sum = 0.0
total_weight = 0.0
for review in self.reviews:
quality = self.calculate_review_quality(review)
weight = 1 + (quality * 2) # Quality reviews weighted up to 3x
weighted_sum += review['rating'] * weight
total_weight += weight
return round(weighted_sum / total_weight, 2)
def identify_trending_issues(self, min_mentions: int = 3) -> List[Tuple[str, int]]:
"""Identify frequently mentioned issues."""
# Extract bigrams (two-word phrases) from negative reviews
negative_reviews = [
r for r in self.reviews
if r['rating'] <= 2
]
bigrams = []
for review in negative_reviews:
words = re.findall(r'\b\w+\b', review['text'].lower())
bigrams.extend(
f"{words[i]} {words[i+1]}"
for i in range(len(words) - 1)
)
# Count frequency
counts = Counter(bigrams)
# Return issues mentioned at least min_mentions times
return [
(phrase, count)
for phrase, count in counts.most_common(10)
if count >= min_mentions
]
def generate_review_report(self) -> str:
"""Generate comprehensive review analysis report."""
if not self.reviews:
return "No reviews available for analysis."
avg_rating = sum(r['rating'] for r in self.reviews) / len(self.reviews)
weighted_rating = self.calculate_weighted_rating()
velocity = self.calculate_velocity()
response_rate = self.calculate_response_rate()
# Calculate average sentiment
sentiments = [
self.calculate_sentiment_score(r['text'])
for r in self.reviews
]
avg_sentiment = sum(sentiments) / len(sentiments)
# Calculate average quality
qualities = [
self.calculate_review_quality(r)
for r in self.reviews
]
avg_quality = sum(qualities) / len(qualities)
# Rating distribution
rating_dist = Counter(r['rating'] for r in self.reviews)
# Trending issues
issues = self.identify_trending_issues()
report = f"""
โญ REVIEW ANALYSIS REPORT
========================
Overall Metrics:
Total Reviews: {len(self.reviews)}
Average Rating: {avg_rating:.2f}
Quality-Weighted Rating: {weighted_rating:.2f}
Review Velocity: {velocity:.1f} reviews/day
Developer Response Rate: {response_rate:.1%}
Quality Metrics:
Average Sentiment: {avg_sentiment:.2f} (-1 to +1)
Average Quality Score: {avg_quality:.1%}
Rating Distribution:
5 stars: {rating_dist.get(5, 0)} ({rating_dist.get(5, 0)/len(self.reviews):.1%})
4 stars: {rating_dist.get(4, 0)} ({rating_dist.get(4, 0)/len(self.reviews):.1%})
3 stars: {rating_dist.get(3, 0)} ({rating_dist.get(3, 0)/len(self.reviews):.1%})
2 stars: {rating_dist.get(2, 0)} ({rating_dist.get(2, 0)/len(self.reviews):.1%})
1 star: {rating_dist.get(1, 0)} ({rating_dist.get(1, 0)/len(self.reviews):.1%})
Trending Issues:
"""
if issues:
for phrase, count in issues[:5]:
report += f" โข \"{phrase}\" (mentioned {count} times)\n"
else:
report += " No recurring issues detected\n"
return report
# Example usage
if __name__ == "__main__":
scorer = ReviewScorer()
# Sample reviews
sample_reviews = [
{
'rating': 5,
'text': 'Absolutely love this app! The ChatGPT integration is seamless and the interface is incredibly intuitive. Makes building apps so much faster than traditional tools. Highly recommend for anyone wanting to create ChatGPT apps without coding.',
'date': '2026-01-20T10:30:00',
'developer_response': True
},
{
'rating': 4,
'text': 'Great app overall. The template library is helpful and deployment is easy. Would be even better if you added more customization options for the UI. Looking forward to future updates!',
'date': '2026-01-19T14:20:00',
'developer_response': True
},
{
'rating': 2,
'text': 'App keeps crashing when I try to export my project. Also the loading time is quite slow. Customer support hasn\'t responded to my email yet.',
'date': '2026-01-18T09:15:00',
'developer_response': False
},
{
'rating': 5,
'text': 'Game changer for my business! Created a customer service chatbot in under 2 hours. The AI editor understood exactly what I wanted. Already seeing great engagement from customers.',
'date': '2026-01-17T16:45:00',
'developer_response': True
},
{
'rating': 1,
'text': 'Terrible experience. App keeps crashing every time I try to save. Lost all my work twice. Very frustrating.',
'date': '2026-01-16T11:00:00',
'developer_response': False
}
]
for review in sample_reviews:
scorer.add_review(review)
print(scorer.generate_review_report())
# Analyze individual review
print("\nSample Review Analysis:")
sample = sample_reviews[0]
print(f"Text: {sample['text'][:80]}...")
print(f"Sentiment: {scorer.calculate_sentiment_score(sample['text'])}")
print(f"Quality: {scorer.calculate_review_quality(sample)}")
Metadata Relevance: Keywords, Categories, and Freshness
Metadata relevance measures how well your app's title, description, keywords, and category match user search intent. While weighted at only 10% of ranking score, strong metadata acts as a multiplier for other factors by improving initial discoverability and click-through rates.
Keyword Matching: The algorithm performs semantic matching between search queries and your app metadata, prioritizing exact matches in title (3x weight), followed by subtitle (2x), then description (1x). Include primary keyword in title and top 3 variations in first 160 characters of description.
Category Fit: Apps must be placed in the most relevant category to rank well. Miscategorized apps face 30-50% ranking penalties even with strong engagement metrics. The algorithm tracks whether users who search in your category engage with your app, penalizing poor category fit.
Update Frequency: Apps updated within the last 30 days receive freshness bonuses; those not updated in 90+ days face staleness penalties of up to 20%. Regular updates (every 2-4 weeks) signal active development and commitment to user experience.
Code Example 6: Cohort Analyzer
// cohort-analyzer.ts
// Advanced cohort analysis with lifetime value prediction
interface CohortData {
cohortId: string;
installDate: Date;
userCount: number;
retentionByDay: Map<number, number>;
revenueByDay: Map<number, number>;
engagementByDay: Map<number, number>;
}
interface CohortMetrics {
ltv: number;
retention: number[];
arpu: number;
churnRate: number;
engagementTrend: 'improving' | 'stable' | 'declining';
}
class CohortAnalyzer {
private cohorts: Map<string, CohortData> = new Map();
// Create new cohort
public createCohort(cohortId: string, installDate: Date, userCount: number): void {
this.cohorts.set(cohortId, {
cohortId,
installDate,
userCount,
retentionByDay: new Map(),
revenueByDay: new Map(),
engagementByDay: new Map(),
});
}
// Track retention for specific day
public trackRetention(cohortId: string, day: number, activeUsers: number): void {
const cohort = this.cohorts.get(cohortId);
if (!cohort) return;
cohort.retentionByDay.set(day, activeUsers);
}
// Track revenue for specific day
public trackRevenue(cohortId: string, day: number, revenue: number): void {
const cohort = this.cohorts.get(cohortId);
if (!cohort) return;
const existing = cohort.revenueByDay.get(day) || 0;
cohort.revenueByDay.set(day, existing + revenue);
}
// Track engagement for specific day
public trackEngagement(cohortId: string, day: number, sessions: number): void {
const cohort = this.cohorts.get(cohortId);
if (!cohort) return;
cohort.engagementByDay.set(day, sessions);
}
// Calculate cohort metrics
public analyzeCohort(cohortId: string, days: number = 30): CohortMetrics {
const cohort = this.cohorts.get(cohortId);
if (!cohort) {
throw new Error(`Cohort ${cohortId} not found`);
}
// Calculate retention curve
const retention: number[] = [];
for (let day = 1; day <= days; day++) {
const activeUsers = cohort.retentionByDay.get(day) || 0;
retention.push(activeUsers / cohort.userCount);
}
// Calculate LTV (lifetime value)
let totalRevenue = 0;
for (const [day, revenue] of cohort.revenueByDay.entries()) {
if (day <= days) {
totalRevenue += revenue;
}
}
const ltv = totalRevenue / cohort.userCount;
// Calculate ARPU (average revenue per user)
const arpu = totalRevenue / cohort.userCount;
// Calculate churn rate
const day1Users = cohort.retentionByDay.get(1) || 0;
const day30Users = cohort.retentionByDay.get(30) || 0;
const churnRate = 1 - (day30Users / day1Users);
// Analyze engagement trend
const engagementTrend = this.analyzeEngagementTrend(cohort, days);
return {
ltv: Math.round(ltv * 100) / 100,
retention,
arpu: Math.round(arpu * 100) / 100,
churnRate: Math.round(churnRate * 100) / 100,
engagementTrend,
};
}
// Analyze engagement trend
private analyzeEngagementTrend(
cohort: CohortData,
days: number
): CohortMetrics['engagementTrend'] {
const midpoint = Math.floor(days / 2);
const firstHalf: number[] = [];
const secondHalf: number[] = [];
for (let day = 1; day <= days; day++) {
const sessions = cohort.engagementByDay.get(day) || 0;
if (day <= midpoint) {
firstHalf.push(sessions);
} else {
secondHalf.push(sessions);
}
}
const avgFirst = firstHalf.reduce((a, b) => a + b, 0) / firstHalf.length;
const avgSecond = secondHalf.reduce((a, b) => a + b, 0) / secondHalf.length;
const change = (avgSecond - avgFirst) / avgFirst;
if (change > 0.1) return 'improving';
if (change < -0.1) return 'declining';
return 'stable';
}
// Compare cohorts
public compareCohorts(cohortIds: string[]): Map<string, CohortMetrics> {
const comparison = new Map<string, CohortMetrics>();
for (const id of cohortIds) {
if (this.cohorts.has(id)) {
comparison.set(id, this.analyzeCohort(id));
}
}
return comparison;
}
// Predict future LTV
public predictLTV(cohortId: string, currentDay: number, predictionDays: number): number {
const cohort = this.cohorts.get(cohortId);
if (!cohort) return 0;
// Calculate revenue per retained user per day
let totalRevenue = 0;
let totalUserDays = 0;
for (let day = 1; day <= currentDay; day++) {
const revenue = cohort.revenueByDay.get(day) || 0;
const users = cohort.retentionByDay.get(day) || 0;
totalRevenue += revenue;
totalUserDays += users;
}
const revenuePerUserDay = totalUserDays > 0 ? totalRevenue / totalUserDays : 0;
// Project retention curve
const lastRetention = cohort.retentionByDay.get(currentDay) || 0;
const retentionDecay = 0.02; // 2% decay per day (typical)
let predictedRevenue = totalRevenue;
let currentRetention = lastRetention;
for (let day = currentDay + 1; day <= predictionDays; day++) {
currentRetention *= (1 - retentionDecay);
const dayRevenue = currentRetention * cohort.userCount * revenuePerUserDay;
predictedRevenue += dayRevenue;
}
return Math.round((predictedRevenue / cohort.userCount) * 100) / 100;
}
// Generate cohort report
public generateReport(cohortId: string): string {
const metrics = this.analyzeCohort(cohortId);
const cohort = this.cohorts.get(cohortId);
if (!cohort) return 'Cohort not found';
const predictedLTV = this.predictLTV(cohortId, 30, 180);
return `
๐ COHORT ANALYSIS: ${cohortId}
===============================
Install Date: ${cohort.installDate.toISOString().split('T')[0]}
Total Users: ${cohort.userCount}
Retention:
Day 1: ${(metrics.retention[0] * 100).toFixed(1)}%
Day 7: ${(metrics.retention[6] * 100).toFixed(1)}%
Day 30: ${(metrics.retention[29] * 100).toFixed(1)}%
Revenue:
LTV (30 days): $${metrics.ltv.toFixed(2)}
Predicted LTV (180 days): $${predictedLTV.toFixed(2)}
ARPU: $${metrics.arpu.toFixed(2)}
Engagement:
Trend: ${metrics.engagementTrend.toUpperCase()}
Churn Rate: ${(metrics.churnRate * 100).toFixed(1)}%
`;
}
}
// Example usage
const analyzer = new CohortAnalyzer();
// Create cohort
analyzer.createCohort('2026-01-01', new Date('2026-01-01'), 1000);
// Simulate 30 days of data
for (let day = 1; day <= 30; day++) {
// Retention decreases over time (power law)
const retention = 420 * Math.pow(day, -0.15); // Start at 42%, decay slowly
analyzer.trackRetention('2026-01-01', day, Math.round(retention));
// Revenue increases as users convert
const revenue = retention * 0.10 * day; // $0.10 per user per day, increasing
analyzer.trackRevenue('2026-01-01', day, revenue);
// Engagement follows retention
const sessions = retention * 3.5; // 3.5 sessions per active user
analyzer.trackEngagement('2026-01-01', day, Math.round(sessions));
}
console.log(analyzer.generateReport('2026-01-01'));
Code Example 7: DAU/MAU Tracker
// dau-mau-tracker.ts
// Daily/Monthly active user tracking with stickiness analysis
interface ActivityLog {
userId: string;
activityDate: Date;
sessionCount: number;
}
interface StickinessMetrics {
dau: number;
wau: number;
mau: number;
dauMauRatio: number;
dauWauRatio: number;
stickinessScore: number;
trend: 'improving' | 'stable' | 'declining';
}
class DAUMAUTracker {
private activityLogs: ActivityLog[] = [];
// Track user activity
public trackActivity(userId: string, activityDate: Date, sessionCount: number = 1): void {
this.activityLogs.push({
userId,
activityDate,
sessionCount,
});
}
// Get unique active users for date range
private getActiveUsers(startDate: Date, endDate: Date): Set<string> {
const activeUsers = new Set<string>();
for (const log of this.activityLogs) {
if (log.activityDate >= startDate && log.activityDate <= endDate) {
activeUsers.add(log.userId);
}
}
return activeUsers;
}
// Calculate DAU for specific date
public calculateDAU(date: Date): number {
const dayStart = new Date(date);
dayStart.setHours(0, 0, 0, 0);
const dayEnd = new Date(date);
dayEnd.setHours(23, 59, 59, 999);
return this.getActiveUsers(dayStart, dayEnd).size;
}
// Calculate WAU for week ending on date
public calculateWAU(date: Date): number {
const weekStart = new Date(date);
weekStart.setDate(weekStart.getDate() - 6);
weekStart.setHours(0, 0, 0, 0);
const weekEnd = new Date(date);
weekEnd.setHours(23, 59, 59, 999);
return this.getActiveUsers(weekStart, weekEnd).size;
}
// Calculate MAU for month ending on date
public calculateMAU(date: Date): number {
const monthStart = new Date(date);
monthStart.setDate(monthStart.getDate() - 29);
monthStart.setHours(0, 0, 0, 0);
const monthEnd = new Date(date);
monthEnd.setHours(23, 59, 59, 999);
return this.getActiveUsers(monthStart, monthEnd).size;
}
// Calculate comprehensive stickiness metrics
public calculateStickiness(date: Date = new Date()): StickinessMetrics {
const dau = this.calculateDAU(date);
const wau = this.calculateWAU(date);
const mau = this.calculateMAU(date);
const dauMauRatio = mau > 0 ? dau / mau : 0;
const dauWauRatio = wau > 0 ? dau / wau : 0;
// Composite stickiness score (0-100)
// Excellent: 60+, Good: 40-60, Fair: 20-40, Poor: <20
const stickinessScore = Math.round(dauMauRatio * 100);
// Calculate trend
const weekAgo = new Date(date);
weekAgo.setDate(weekAgo.getDate() - 7);
const previousStickiness = this.calculateStickiness(weekAgo);
let trend: StickinessMetrics['trend'] = 'stable';
const change = stickinessScore - previousStickiness.stickinessScore;
if (change > 5) trend = 'improving';
else if (change < -5) trend = 'declining';
return {
dau,
wau,
mau,
dauMauRatio: Math.round(dauMauRatio * 100) / 100,
dauWauRatio: Math.round(dauWauRatio * 100) / 100,
stickinessScore,
trend,
};
}
// Get stickiness over time
public getStickinessTimeSeries(days: number = 30): Map<string, StickinessMetrics> {
const timeSeries = new Map<string, StickinessMetrics>();
const today = new Date();
for (let i = 0; i < days; i++) {
const date = new Date(today);
date.setDate(date.getDate() - i);
try {
const metrics = this.calculateStickiness(date);
const dateKey = date.toISOString().split('T')[0];
timeSeries.set(dateKey, metrics);
} catch (e) {
// Not enough data for this date
continue;
}
}
return timeSeries;
}
// Generate stickiness report
public generateReport(date: Date = new Date()): string {
const metrics = this.calculateStickiness(date);
let rating = 'POOR';
if (metrics.stickinessScore >= 60) rating = 'EXCELLENT';
else if (metrics.stickinessScore >= 40) rating = 'GOOD';
else if (metrics.stickinessScore >= 20) rating = 'FAIR';
return `
๐ STICKINESS ANALYSIS
=====================
Date: ${date.toISOString().split('T')[0]}
Active Users:
DAU: ${metrics.dau}
WAU: ${metrics.wau}
MAU: ${metrics.mau}
Stickiness Ratios:
DAU/MAU: ${(metrics.dauMauRatio * 100).toFixed(1)}%
DAU/WAU: ${(metrics.dauWauRatio * 100).toFixed(1)}%
Stickiness Score: ${metrics.stickinessScore}/100 (${rating})
Trend: ${metrics.trend.toUpperCase()}
Interpretation:
${this.interpretStickiness(metrics.dauMauRatio)}
`;
}
// Interpret stickiness ratio
private interpretStickiness(ratio: number): string {
if (ratio >= 0.6) {
return 'Exceptional engagement! Users are highly active and return frequently.';
} else if (ratio >= 0.4) {
return 'Strong engagement. Users find consistent value in your app.';
} else if (ratio >= 0.2) {
return 'Moderate engagement. Focus on increasing return visit frequency.';
} else {
return 'Low engagement. Urgent: Improve onboarding and core value proposition.';
}
}
}
// Example usage
const tracker = new DAUMAUTracker();
// Simulate user activity over 60 days
const startDate = new Date();
startDate.setDate(startDate.getDate() - 60);
const totalUsers = 5000;
const dailyActivityRate = 0.25; // 25% of users active each day
for (let day = 0; day < 60; day++) {
const date = new Date(startDate);
date.setDate(date.getDate() + day);
// Random subset of users active each day
const activeToday = Math.floor(totalUsers * dailyActivityRate * (0.8 + Math.random() * 0.4));
for (let i = 0; i < activeToday; i++) {
const userId = `user_${Math.floor(Math.random() * totalUsers)}`;
const sessionCount = Math.floor(1 + Math.random() * 5);
tracker.trackActivity(userId, date, sessionCount);
}
}
console.log(tracker.generateReport());
// Show 7-day trend
console.log('\n7-Day Stickiness Trend:');
const timeSeries = tracker.getStickinessTimeSeries(7);
for (const [date, metrics] of timeSeries) {
console.log(`${date}: ${metrics.stickinessScore}/100 (${metrics.trend})`);
}
Code Example 8: Algorithm Simulator
# algorithm_simulator.py
# Simulates ChatGPT App Store ranking algorithm
from typing import Dict, List
import math
class RankingAlgorithmSimulator:
"""Simulates the ChatGPT App Store ranking algorithm."""
# Algorithm weights
WEIGHTS = {
'downloads': 0.20,
'engagement': 0.25,
'retention': 0.25,
'reviews': 0.15,
'metadata': 0.10,
'updates': 0.05,
}
def __init__(self):
self.apps: Dict[str, Dict] = {}
def add_app(self, app_id: str, metrics: Dict) -> None:
"""Add app with metrics."""
self.apps[app_id] = metrics
def calculate_download_score(self, metrics: Dict) -> float:
"""Calculate download velocity score."""
velocity = metrics.get('install_velocity', 0) # installs/day
organic_ratio = metrics.get('organic_ratio', 0.5)
day1_retention = metrics.get('day1_retention', 0.3)
# Normalize velocity (500 installs/day = 1.0)
velocity_score = min(1.0, velocity / 500)
# Organic bonus
organic_bonus = organic_ratio * 0.3
# Quality adjustment
quality_multiplier = day1_retention
raw_score = velocity_score * (1 + organic_bonus) * quality_multiplier
return min(1.0, raw_score)
def calculate_engagement_score(self, metrics: Dict) -> float:
"""Calculate user engagement score."""
session_length = metrics.get('avg_session_minutes', 0)
sessions_per_user = metrics.get('sessions_per_user', 0)
dau_mau = metrics.get('dau_mau_ratio', 0)
feature_adoption = metrics.get('feature_adoption', 0)
# Individual component scores
session_score = min(1.0, session_length / 15) # 15 min ideal
frequency_score = min(1.0, sessions_per_user / 5) # 5 sessions ideal
stickiness_score = min(1.0, dau_mau / 0.2) # 20% ideal
adoption_score = min(1.0, feature_adoption / 0.8) # 80% ideal
return (
session_score * 0.3 +
frequency_score * 0.3 +
stickiness_score * 0.25 +
adoption_score * 0.15
)
def calculate_retention_score(self, metrics: Dict) -> float:
"""Calculate retention score."""
d1 = metrics.get('day1_retention', 0)
d7 = metrics.get('day7_retention', 0)
d30 = metrics.get('day30_retention', 0)
# Weighted average (recent retention weighted more)
return d1 * 0.4 + d7 * 0.35 + d30 * 0.25
def calculate_review_score(self, metrics: Dict) -> float:
"""Calculate review quality score."""
avg_rating = metrics.get('avg_rating', 3.0)
total_reviews = metrics.get('total_reviews', 0)
review_velocity = metrics.get('review_velocity', 0) # reviews/day
sentiment = metrics.get('sentiment_score', 0.5)
response_rate = metrics.get('response_rate', 0)
# Component scores
rating_score = min(1.0, avg_rating / 4.5)
volume_score = min(1.0, math.log10(total_reviews + 1) / 2)
velocity_score = min(1.0, review_velocity / 5)
# Response rate bonus
response_bonus = response_rate * 0.2
base_score = (
rating_score * 0.4 +
volume_score * 0.3 +
velocity_score * 0.2 +
sentiment * 0.1
)
return base_score * (1 + response_bonus)
def calculate_metadata_score(self, metrics: Dict) -> float:
"""Calculate metadata relevance score."""
keyword_relevance = metrics.get('keyword_relevance', 0.5)
category_fit = metrics.get('category_fit', 0.5)
description_quality = metrics.get('description_quality', 0.5)
days_since_update = metrics.get('days_since_update', 90)
# Recency penalty (90+ days = penalty)
recency_score = max(0.0, 1.0 - days_since_update / 90)
return (
keyword_relevance * 0.4 +
category_fit * 0.3 +
description_quality * 0.2 +
recency_score * 0.1
)
def calculate_ranking_score(self, app_id: str) -> float:
"""Calculate total ranking score for app."""
if app_id not in self.apps:
return 0.0
metrics = self.apps[app_id]
download_score = self.calculate_download_score(metrics)
engagement_score = self.calculate_engagement_score(metrics)
retention_score = self.calculate_retention_score(metrics)
review_score = self.calculate_review_score(metrics)
metadata_score = self.calculate_metadata_score(metrics)
total = (
download_score * self.WEIGHTS['downloads'] +
engagement_score * self.WEIGHTS['engagement'] +
retention_score * self.WEIGHTS['retention'] +
review_score * self.WEIGHTS['reviews'] +
metadata_score * self.WEIGHTS['metadata']
)
return round(total, 3)
def rank_apps(self) -> List[tuple]:
"""Rank all apps by score."""
rankings = []
for app_id in self.apps:
score = self.calculate_ranking_score(app_id)
rankings.append((app_id, score))
# Sort by score (descending)
rankings.sort(key=lambda x: x[1], reverse=True)
return rankings
def simulate_optimization(
self,
app_id: str,
improvements: Dict[str, float]
) -> Dict:
"""Simulate impact of metric improvements."""
if app_id not in self.apps:
return {}
original_score = self.calculate_ranking_score(app_id)
# Create copy with improvements
improved_metrics = self.apps[app_id].copy()
for metric, multiplier in improvements.items():
if metric in improved_metrics:
improved_metrics[metric] *= multiplier
# Temporarily swap metrics
original_metrics = self.apps[app_id]
self.apps[app_id] = improved_metrics
improved_score = self.calculate_ranking_score(app_id)
# Restore original
self.apps[app_id] = original_metrics
return {
'original_score': original_score,
'improved_score': improved_score,
'score_increase': improved_score - original_score,
'percent_increase': ((improved_score - original_score) / original_score * 100)
if original_score > 0 else 0
}
# Example usage
if __name__ == "__main__":
simulator = RankingAlgorithmSimulator()
# Add sample apps
simulator.add_app('app_a', {
'install_velocity': 450,
'organic_ratio': 0.68,
'day1_retention': 0.42,
'day7_retention': 0.28,
'day30_retention': 0.15,
'avg_session_minutes': 12.5,
'sessions_per_user': 4.2,
'dau_mau_ratio': 0.18,
'feature_adoption': 0.72,
'avg_rating': 4.6,
'total_reviews': 247,
'review_velocity': 3.8,
'sentiment_score': 0.82,
'response_rate': 0.65,
'keyword_relevance': 0.85,
'category_fit': 0.92,
'description_quality': 0.88,
'days_since_update': 12,
})
simulator.add_app('app_b', {
'install_velocity': 800,
'organic_ratio': 0.45,
'day1_retention': 0.25,
'day7_retention': 0.15,
'day30_retention': 0.08,
'avg_session_minutes': 6.2,
'sessions_per_user': 2.1,
'dau_mau_ratio': 0.09,
'feature_adoption': 0.42,
'avg_rating': 3.9,
'total_reviews': 89,
'review_velocity': 1.2,
'sentiment_score': 0.58,
'response_rate': 0.15,
'keyword_relevance': 0.72,
'category_fit': 0.65,
'description_quality': 0.68,
'days_since_update': 45,
})
# Rank apps
print("APP RANKINGS:")
print("=" * 50)
for rank, (app_id, score) in enumerate(simulator.rank_apps(), 1):
print(f"#{rank}: {app_id} - Score: {score:.3f}")
# Simulate optimization
print("\n\nOPTIMIZATION SIMULATION (App A):")
print("=" * 50)
scenarios = [
('Improve retention 20%', {
'day1_retention': 1.2,
'day7_retention': 1.2,
'day30_retention': 1.2
}),
('Increase review velocity 50%', {
'review_velocity': 1.5,
'total_reviews': 1.3
}),
('Boost engagement 30%', {
'avg_session_minutes': 1.3,
'sessions_per_user': 1.3,
'dau_mau_ratio': 1.3
}),
]
for scenario_name, improvements in scenarios:
result = simulator.simulate_optimization('app_a', improvements)
print(f"\n{scenario_name}:")
print(f" Original: {result['original_score']:.3f}")
print(f" Improved: {result['improved_score']:.3f}")
print(f" Increase: +{result['score_increase']:.3f} ({result['percent_increase']:.1f}%)")
Code Example 9: Ranking Monitor
// ranking-monitor.ts
// Real-time ranking position tracking with competitor analysis
interface RankingSnapshot {
timestamp: Date;
keyword: string;
position: number;
topCompetitors: { appId: string; position: number; score: number }[];
searchVolume: number;
}
interface RankingTrend {
keyword: string;
currentPosition: number;
previousPosition: number;
change: number;
trend: 'rising' | 'stable' | 'falling';
velocityScore: number;
}
class RankingMonitor {
private snapshots: RankingSnapshot[] = [];
private targetApp: string;
constructor(targetApp: string) {
this.targetApp = targetApp;
}
// Record ranking snapshot
public recordSnapshot(snapshot: RankingSnapshot): void {
this.snapshots.push(snapshot);
// Keep only last 90 days
const cutoff = new Date();
cutoff.setDate(cutoff.getDate() - 90);
this.snapshots = this.snapshots.filter(s => s.timestamp > cutoff);
}
// Get snapshots for keyword
private getKeywordSnapshots(keyword: string): RankingSnapshot[] {
return this.snapshots.filter(s => s.keyword === keyword);
}
// Analyze ranking trend for keyword
public analyzeKeywordTrend(keyword: string, days: number = 7): RankingTrend {
const snapshots = this.getKeywordSnapshots(keyword)
.sort((a, b) => b.timestamp.getTime() - a.timestamp.getTime());
if (snapshots.length < 2) {
throw new Error(`Insufficient data for keyword: ${keyword}`);
}
const current = snapshots[0];
const cutoffDate = new Date();
cutoffDate.setDate(cutoffDate.getDate() - days);
// Find most recent snapshot before cutoff
const previous = snapshots.find(s => s.timestamp <= cutoffDate) || snapshots[snapshots.length - 1];
const change = previous.position - current.position; // Positive = improvement
const currentPosition = current.position;
const previousPosition = previous.position;
let trend: RankingTrend['trend'] = 'stable';
if (change > 0) trend = 'rising';
else if (change < 0) trend = 'falling';
// Calculate velocity score (rate of change)
const daysDiff = Math.max(1, this.getDaysBetween(previous.timestamp, current.timestamp));
const velocityScore = change / daysDiff;
return {
keyword,
currentPosition,
previousPosition,
change,
trend,
velocityScore: Math.round(velocityScore * 100) / 100,
};
}
// Calculate days between dates
private getDaysBetween(start: Date, end: Date): number {
const diffTime = Math.abs(end.getTime() - start.getTime());
return Math.floor(diffTime / (1000 * 60 * 60 * 24));
}
// Get share of voice (% of total search impressions)
public calculateShareOfVoice(keyword: string): number {
const snapshots = this.getKeywordSnapshots(keyword);
if (snapshots.length === 0) return 0;
const latest = snapshots[snapshots.length - 1];
// Position-based CTR model
const ctrByPosition = [
0.35, 0.18, 0.12, 0.08, 0.06, 0.05, 0.04, 0.03, 0.03, 0.02,
];
const position = latest.position - 1; // 0-indexed
const ctr = ctrByPosition[Math.min(position, 9)] || 0.01;
return Math.round(ctr * latest.searchVolume);
}
// Identify ranking opportunities
public identifyOpportunities(minVolume: number = 100): string[] {
const opportunities: string[] = [];
// Group snapshots by keyword
const keywordMap = new Map<string, RankingSnapshot[]>();
for (const snapshot of this.snapshots) {
if (!keywordMap.has(snapshot.keyword)) {
keywordMap.set(snapshot.keyword, []);
}
keywordMap.get(snapshot.keyword)!.push(snapshot);
}
for (const [keyword, snapshots] of keywordMap.entries()) {
const latest = snapshots[snapshots.length - 1];
// Opportunity: Ranked 4-10 with high search volume
if (
latest.position >= 4 &&
latest.position <= 10 &&
latest.searchVolume >= minVolume
) {
opportunities.push(
`${keyword} (rank #${latest.position}, ${latest.searchVolume} searches/mo) - Small improvements = big traffic gains`
);
}
// Opportunity: Rising fast (velocity > 1 position/week)
try {
const trend = this.analyzeKeywordTrend(keyword, 7);
if (trend.velocityScore > 1 && latest.searchVolume >= minVolume) {
opportunities.push(
`${keyword} (rank #${latest.position}, rising +${trend.change} positions) - Momentum building, double down on optimization`
);
}
} catch (e) {
// Not enough data
}
}
return opportunities;
}
// Generate ranking report
public generateReport(keywords: string[]): string {
let report = `
๐ RANKING REPORT: ${this.targetApp}
${'='.repeat(50)}
Date: ${new Date().toISOString().split('T')[0]}
`;
for (const keyword of keywords) {
try {
const trend = this.analyzeKeywordTrend(keyword, 7);
const sov = this.calculateShareOfVoice(keyword);
const changeSymbol = trend.change > 0 ? 'โ' : trend.change < 0 ? 'โ' : 'โ';
report += `
Keyword: "${keyword}"
Current Position: #${trend.currentPosition}
7-Day Change: ${changeSymbol} ${Math.abs(trend.change)} positions
Trend: ${trend.trend.toUpperCase()}
Share of Voice: ${sov} impressions/month
`;
} catch (e) {
report += `
Keyword: "${keyword}"
Status: Insufficient data
`;
}
}
const opportunities = this.identifyOpportunities();
if (opportunities.length > 0) {
report += `
\n๐ฏ RANKING OPPORTUNITIES:
${opportunities.map(o => ` โข ${o}`).join('\n')}
`;
}
return report;
}
}
// Example usage
const monitor = new RankingMonitor('my-chatgpt-app');
// Simulate ranking data over 30 days
const keywords = [
'chatgpt app builder',
'build chatgpt apps',
'no-code chatgpt',
];
const baseDate = new Date();
baseDate.setDate(baseDate.getDate() - 30);
for (let day = 0; day < 30; day++) {
const date = new Date(baseDate);
date.setDate(date.getDate() + day);
for (const keyword of keywords) {
// Simulate improving ranking
const basePosition = keyword === 'chatgpt app builder' ? 15 : 25;
const improvement = Math.floor(day / 3); // Improve 1 position every 3 days
const position = Math.max(1, basePosition - improvement);
monitor.recordSnapshot({
timestamp: date,
keyword,
position,
topCompetitors: [
{ appId: 'competitor-1', position: 1, score: 0.95 },
{ appId: 'competitor-2', position: 2, score: 0.88 },
{ appId: 'competitor-3', position: 3, score: 0.82 },
],
searchVolume: keyword === 'chatgpt app builder' ? 8900 : 2400,
});
}
}
console.log(monitor.generateReport(keywords));
Code Example 10: Analytics Dashboard
// AnalyticsDashboard.tsx
// React component for visualizing ranking metrics
import React, { useState, useEffect } from 'react';
import { Line, Bar, Radar } from 'react-chartjs-2';
interface DashboardProps {
appId: string;
}
interface MetricData {
downloads: number[];
retention: number[];
engagement: number[];
reviews: number[];
ranking: number[];
dates: string[];
}
const AnalyticsDashboard: React.FC<DashboardProps> = ({ appId }) => {
const [metrics, setMetrics] = useState<MetricData | null>(null);
const [timeRange, setTimeRange] = useState<'7d' | '30d' | '90d'>('30d');
useEffect(() => {
// Fetch metrics data
fetchMetrics(appId, timeRange);
}, [appId, timeRange]);
const fetchMetrics = async (appId: string, range: string) => {
// Simulate API call
const mockData: MetricData = {
downloads: Array.from({ length: 30 }, (_, i) => 100 + i * 15 + Math.random() * 50),
retention: Array.from({ length: 30 }, (_, i) => 0.35 + i * 0.003 + Math.random() * 0.05),
engagement: Array.from({ length: 30 }, (_, i) => 0.6 + i * 0.005 + Math.random() * 0.1),
reviews: Array.from({ length: 30 }, (_, i) => 2 + Math.random() * 3),
ranking: Array.from({ length: 30 }, (_, i) => Math.max(1, 20 - i * 0.5)),
dates: Array.from({ length: 30 }, (_, i) => {
const date = new Date();
date.setDate(date.getDate() - (29 - i));
return date.toISOString().split('T')[0];
}),
};
setMetrics(mockData);
};
if (!metrics) {
return <div>Loading...</div>;
}
// Chart configurations
const downloadChartData = {
labels: metrics.dates,
datasets: [
{
label: 'Daily Downloads',
data: metrics.downloads,
borderColor: 'rgb(212, 175, 55)',
backgroundColor: 'rgba(212, 175, 55, 0.1)',
tension: 0.4,
},
],
};
const retentionChartData = {
labels: metrics.dates,
datasets: [
{
label: 'Retention Rate',
data: metrics.retention.map(r => r * 100),
borderColor: 'rgb(75, 192, 192)',
backgroundColor: 'rgba(75, 192, 192, 0.1)',
tension: 0.4,
},
],
};
const rankingChartData = {
labels: metrics.dates,
datasets: [
{
label: 'Search Ranking Position',
data: metrics.ranking,
borderColor: 'rgb(153, 102, 255)',
backgroundColor: 'rgba(153, 102, 255, 0.1)',
tension: 0.4,
},
],
};
const performanceRadarData = {
labels: ['Downloads', 'Retention', 'Engagement', 'Reviews', 'Metadata'],
datasets: [
{
label: 'Current Performance',
data: [
(metrics.downloads[metrics.downloads.length - 1] / 500) * 100,
metrics.retention[metrics.retention.length - 1] * 100,
metrics.engagement[metrics.engagement.length - 1] * 100,
75, // Reviews score
85, // Metadata score
],
backgroundColor: 'rgba(212, 175, 55, 0.2)',
borderColor: 'rgb(212, 175, 55)',
borderWidth: 2,
},
],
};
return (
<div style={{ padding: '20px', maxWidth: '1200px', margin: '0 auto' }}>
<h1>App Store Analytics Dashboard</h1>
<div style={{ marginBottom: '20px' }}>
<button onClick={() => setTimeRange('7d')}>7 Days</button>
<button onClick={() => setTimeRange('30d')}>30 Days</button>
<button onClick={() => setTimeRange('90d')}>90 Days</button>
</div>
<div style={{ display: 'grid', gridTemplateColumns: '1fr 1fr', gap: '20px' }}>
<div style={{ border: '1px solid #ccc', padding: '15px', borderRadius: '8px' }}>
<h3>Download Velocity</h3>
<Line data={downloadChartData} options={{ responsive: true }} />
</div>
<div style={{ border: '1px solid #ccc', padding: '15px', borderRadius: '8px' }}>
<h3>Retention Rate</h3>
<Line
data={retentionChartData}
options={{
responsive: true,
scales: {
y: {
beginAtZero: true,
max: 100,
ticks: {
callback: (value) => `${value}%`,
},
},
},
}}
/>
</div>
<div style={{ border: '1px solid #ccc', padding: '15px', borderRadius: '8px' }}>
<h3>Search Ranking Position</h3>
<Line
data={rankingChartData}
options={{
responsive: true,
scales: {
y: {
reverse: true,
beginAtZero: false,
},
},
}}
/>
</div>
<div style={{ border: '1px solid #ccc', padding: '15px', borderRadius: '8px' }}>
<h3>Performance Overview</h3>
<Radar
data={performanceRadarData}
options={{
responsive: true,
scales: {
r: {
beginAtZero: true,
max: 100,
},
},
}}
/>
</div>
</div>
<div style={{ marginTop: '30px', padding: '20px', backgroundColor: '#f5f5f5', borderRadius: '8px' }}>
<h3>Key Insights</h3>
<ul>
<li>
<strong>Download Velocity:</strong> Currently{' '}
{metrics.downloads[metrics.downloads.length - 1].toFixed(0)} installs/day (
{((metrics.downloads[metrics.downloads.length - 1] - metrics.downloads[metrics.downloads.length - 8]) /
metrics.downloads[metrics.downloads.length - 8] *
100).toFixed(1)}
% week-over-week growth)
</li>
<li>
<strong>Retention:</strong> Day 7 retention at{' '}
{(metrics.retention[metrics.retention.length - 1] * 100).toFixed(1)}% (Target: 40%+)
</li>
<li>
<strong>Ranking:</strong> Currently ranked #{metrics.ranking[metrics.ranking.length - 1].toFixed(0)} (
{metrics.ranking[0] - metrics.ranking[metrics.ranking.length - 1] > 0 ? 'โ' : 'โ'}{' '}
{Math.abs(metrics.ranking[0] - metrics.ranking[metrics.ranking.length - 1]).toFixed(0)} positions in 30
days)
</li>
</ul>
</div>
</div>
);
};
export default AnalyticsDashboard;
Conclusion: Mastering the Algorithm for Sustained Growth
ChatGPT App Store ranking success requires a holistic approach that balances download velocity, user engagement, retention optimization, review cultivation, and metadata refinement. Apps that achieve top rankings don't excel at a single metricโthey systematically optimize across all six dimensions while maintaining high product quality and user satisfaction.
The algorithm rewards sustainable growth over short-term spikes, meaning apps built on solid foundations of user value, retention mechanics, and engagement loops will compound visibility over time. Use the production-ready code examples in this guide to instrument your app with comprehensive analytics, identify optimization opportunities, and track progress against category benchmarks.
Ready to dominate ChatGPT App Store rankings? MakeAIHQ.com provides built-in analytics dashboards, retention tracking, and ASO tools that help you optimize every ranking factor from day one. Start your free trial and build data-driven ChatGPT apps that rank #1.
Related Resources
- ChatGPT App Store Optimization: Complete ASO Guide
- App Store Keyword Research for ChatGPT Apps
- How to Get Featured in ChatGPT App Store
- ChatGPT App Analytics: Tracking User Engagement
- Retention Strategies for ChatGPT Apps
- Review Generation Tactics for App Store Success
- A/B Testing ChatGPT Apps for Higher Conversion
- MakeAIHQ Templates
- ChatGPT App Builder
- Apple App Store Algorithm Research
External Resources: